
COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 27

This letter is based on my position statement for a
workshop on the preparation of IT graduates for 2010
and beyond [4].

W
hereas in the past we created obstacles
to reduce the number of CS majors,
today we must recruit students to have
the work force needed to meet the chal-

lenges and opportunities of information technology
in this century. We should take advantage of the
reduced pressures from the dip in enrollments to
revamp our curriculum.

First, let’s start with the state of the world in 2006
rather than 1976. Second, let’s create courses that we
would love to take if we were students, and that we
would love to teach if given the chance. Such enthu-
siasm would be attractive and contagious.

Rather than wax on philosophically, I’ll confine
my remarks to four concrete suggestions: two tech-
nological upgrades and two examples of courses I
would love to take and teach. All these suggestions
leverage technology not available when the CS cur-
riculum was first created.

TECHNOLOGICAL UPGRADE #1 FOR 21ST CENTURY CS:
USE TOOLS AND LIBRARIES.
There is a huge disconnect between the experience
of most professors, who have never worked as pro-
fessional programmers and often write software for
a 30-year-old environment, and the way in which
cutting-edge software is written today.

For example, although many professors use a
more recent programming language like Java, sur-
prisingly few have embraced modern programming
environments like the Eclipse development platform
and the JUnit testing framework. Moreover, a great
many exciting programming projects today build on
existing components such as .NET or NETBeans.

For many CS courses, a dramatic change would
simply be if students first wrote a clear specification
and then built software using modern tools and soft-
ware components.

TECHNOLOGICAL UPGRADE #2 FOR 21ST CENTURY CS:
PARALLELISM.
In case you weren’t paying attention, the era of
doubling performance every 18 months ended in
2002, as the figure here documents [3]. Three fac-
tors have combined to grind uniprocessor perfor-
mance improvement almost to a halt.

• The lack of additional power for a chip to dissi-
pate,

• The lack of additional instruction-level paral-
lelism to exploit, and

• The lack of improvement in memory latency.

This sea change is demonstrated by the change in
direction of microprocessor companies away from
increasing clock rates and uniprocessor performance.
AMD, Intel, IBM, Sun Microsystems, among others

Computer Science Education
in the 21st Century

David A. PattersonPresident’s Letter

To draw students to CS, we must first look to create a curriculum
that reflects the exciting opportunities and challenges of IT today
versus the 1970s. Future students and faculty would greatly benefit
from a reinvigorated CS curriculum.

are either already shipping mul-
tiprocessors on a chip as their
mainline product or will in near
future. Apple just announced
the next generation of Macin-
toshes, and all will include two
processors—even laptops!

The table on the next page
shows the number of processors
(“cores”) on a chip and number
of hardware-supported threads
per processor on current and
upcoming microprocessors.

Hardware companies will
market the number of proces-
sors per chip rather than clock
rate from now on, and the
number of processors is pre-
dicted to double every two
years. If the prediction holds,
by the time an entering fresh-
man class graduates, standard
desktop PCs will include at
least eight processors.

In our past, some have pre-
maturely claimed that parallel
programming was the only
option for the immediate
future. The steep part of the graph belies that claim.
The difference today is that no hardware company is
planning to sell much faster sequential processors. If
you can’t buy them, parallel procrastination will be
penalized instead of rewarded.

Given this sea change, how much of the curricu-
lum—and what fraction of the CS faculty—is obliv-
ious to concurrency? How many algorithms, data
structures, languages, compilers, debuggers, operat-
ing systems, books, and lectures must change to
match the transformation in underlying technology
if they are to remain relevant in the 21st century?

Educating faculty so they can train students prop-
erly is not a trivial bootstrapping problem. At
research universities, if we can ensure that all future
research assumes concurrent computing, the skills
gained there hopefully can trickle down quickly to
the classroom.

COURSE I WOULD LOVE TO TAKE #1:
JOIN THE OPEN SOURCE MOVEMENT.
Most schools teach “write programs from blank
sheet of paper” programming, of which there is
very little real-world bearing. A different approach
is to leverage high-quality examples of the open
source movement. For example, a database class
might be based on PostgreSQL and an operating
system class might use BSD Unix. (Well-docu-
mented and well-crafted code trumps popular for
pedagogic reasons.) The high-level idea is taking
advantage of a technology that has been created for
other reasons that can make the classroom a much
more exciting and realistic place.

If this works, it would be inspiring for students
working on real production software. Even compa-
nies that don’t use open source software may benefit
from students who can do more than just write pro-
grams from scratch. In addition, it could be a differ-
entiator on a college campus. Do civil engineering
students get to contribute to the construction of a
real bridge in the classroom? Do history courses
allow students to help write a book? The recruiting
pitch is to join CS and learn in part by contributing
immediately to the real world.

To help learn a large system, writing documenta-
tion for portions of open source code could be an
assignment. Documentation is important yet rare in
the classroom and the open source movement. It’s
likely that open source developers would welcome
good documentation, given its absence. Students
would be inspired that their coursework could be

28 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

President’s Letter

Growth in processor
performance since 1978

relative to the VAX 11/ 780
as measured by the

SPECint benchmarks
(from SPECint89 to

SPECint2000). Prior to the
mid-1980s, processor per-

formance growth was
largely technology driven,
and averaged about 25%
per year. The increase in

growth from 1986 to 2002
to about 52% was due to
more advanced architec-
tural and organizational

ideas exploiting Moore’s
Law. It’s less than 20%
per year since 2002 [3].

used in real systems, as well as bear the responsibility
of that opportunity.

Another assignment is to have teams of students
help debug this large system, in part by using the
documentation that other students have written.
While they might start with a local version of the
code that includes bugs inserted by a teaching assis-
tant, the exciting challenge would try to take on real
open bugs. They could post the source of the prob-
lem to the open source group in addition to their
proposed fixes. Since
you won’t run out of
new bugs to assign,
instructors don’t have
to worry about stu-
dents copying their
solutions from the last
term.

A third assignment
might be to propose a
new feature for open source software. Open source
projects have a list of improvements they are consid-
ering; why not have teams of students propose how
one might be done? If time permits, they could code
the upgrade and benchmark the results. This assign-
ment has been in database courses for a while at
Berkeley and CMU [1].

Presumably lectures and reading assignments
would supplement the projects covering aspects of
the programming: good coding styles, good
approaches to testing, the software life cycle, and so
on. Now students could look at real code to form
their opinion of these ideas based on hands-on expe-
rience. If the approach works, I’m sure new text-
books would document the good open source
examples, which would increase the plausibility of
this approach.

The challenge is preventing the large code base
from overwhelming the students, interfering with
learning the conceptual material of the course. If we

can meet this challenge, this is a course I’d love to
take.

COURSE I WOULD LOVE TO TAKE #2:
BUILD YOUR OWN SUPERCOMPUTER.
Like open source software, Field Programmable
Gate Arrays (FPGAs) is another technology that
makes the classroom a much more exciting and
realistic place. FPGAs were created to collect the
miscellaneous pieces of logic on a board into a sin-

gle chip and to give
the hardware engi-
neer flexibility in
making changes late
in the design. They
are programmable

hardware, as the logic blocks are just memory that
can be programmed to perform any logical func-
tion, and the rest of the chip is interconnected to
join these programmable logic blocks in interesting
ways. Since they are so simple to manufacture, they
still are on Moore’s Law, doubling hardware
resources every 18 months. FPGAs currently repre-
sent a billion-dollar-a-year industry.

The computer-aided design tools for FPGAs are
much like those of a real chip: logic synthesis, place-
ment, routing, and so on. Hence, many universities
already use FPGAs in their logic design courses
because FPGAs have many of the aspects of real
hardware design without the time delays and cost of
fabricating chips. Moreover, FPGAs have credibility;
if a design works well in an FPGA, it will likely work
well in a real chip.

For a few hundred dollars, students can attach a
board to their PCs and get the CAD software to
build their own computer. Although the processors
might only run at 200MHz, that is still plenty fast
enough to run operating systems and real programs.
Since hardware generally doesn’t work until most
bugs are fixed, there are few more exciting events

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 29

Prez letter table (3/06) Rev.

Manufacturer/Year AMD/2005

2

1

2

Processors/chip

Threads/Processor

Threads/Chip

Intel/2006

2

2

4

IBM/2004 Sun/2005

2

2

4

8

4

32

The number of processors on a chip
and number of hardware-supported

threads per processor on current and
future microprocessors.

Let’s create courses that we would love to take if we were
students, and that we would love to teach if given the chance.

Such enthusiasm would be attractive and contagious.

than to see your computer run real programs suc-
cessfully for the first time.

In addition to FPGAs, we would leverage the
small open source movement for hardware (see
opencores.org). They offer big hardware blocks that
work, like processors, Ethernet controllers, and so on
that can be used for either real chips or FPGAs.
Thus, the processor is the lowest-level building
block, taking over from the transistor or nand gate.

The growth of FPGA resources plus the open
source hardware movement creates the new opportu-
nity. We can place 25 pipelined-processors inside a
single large FPGA today, and the number of proces-
sors should double every 18 months. By starting
with working processors as the building blocks, stu-
dents can tackle interesting issues facing the field
today, such as how to design computer systems to
make it easier to write parallel programs or memory
architectures for high-performance garbage collec-
tion. I’d love to design a supercomputer in such a
course.

This technological opportunity has inspired a
group of us at a half-dozen universities to join forces
around a common hardware design that connects 40
FPGAs together. We plan to develop a 1,000-way
multiprocessor based on standard instruction sets
that can run standard software stacks. We would
then share that “gateware” and software with the
research community. We believe it will be an attrac-
tive platform for ramping up hardware and software
research in multiple processors, and that it can be
economically replicated so that many departments
could have one. This vision gave the project its
name: Research Accelerator for Multiple Processors,
or RAMP [2]. When completed, it will enable stu-
dents to explore and share even grander designs than
a single FPGA. (To learn more, see ramp.eecs.berke-
ley.edu/.)

CONCLUSION

Our computer science curriculum was developed at
a time when it was the first introduction students
had to computing and the software we use every-
day had not yet been written. There have been
extraordinary developments since then, and most
students arrive on campus today with years of com-
puter experience. While one challenge to our cur-
riculum is to catch up to the technology of the 21st

century, another is we haven’t leveraged the better
background of students. A third challenge is for CS
faculty to learn new ways.

Let’s learn and try creating CS courses that we’d
love to take and teach, and that will capture the
exciting opportunities and challenges of our field
and of our students.

References
1. Anastassia A. and Hellerstein, J.M. Exposing undergraduate students to

database system internals. ACM SIGMOD Record 32, 3 (Sept. 2003),
18–20.

2. Arvind, K.A., Chiou, D., Hoe, J.C. Kozyrakis, C., Lu, S-L, Oskin, M.,
Patterson, D., Rabaey, J., and Wawrzynek, J. RAMP: Research Accelera-
tor for Multiple Processors—A Community Vision for a Shared Experimen-
tal Parallel HW/SW Platform. Technical Report UCB//CSD-05-1412,
University of California, Berkeley, Sept. 2005.

3. Hennessy, J. and Patterson, D. Computer Architecture: A Quantitative
Approach, 4th Edition (to appear Oct. 2006).

4. NSF Workshop. Interative Computing Education and Research—
Preparing Graduates for 2010 and Beyond. (Jan. 27–28, Palo Alto, CA);
www.evergreen.edu/icer.

These ideas came from conversations with many friends and colleagues, especially
Nina Bhatti of Hewlett-Packard Labs, James Gosling of Sun Microsystems, Joe
Hellerstein of UC Berkeley, John Hennessy of Stanford, Jim Larus of Microsoft
Research, and Kathy Yelick of UC Berkeley.

David A. Patterson (pattrsn@cs.berkeley.edu) is president of
ACM and the Pardee Professor of Computer Science at the University
of California at Berkeley.

© 2006 ACM 0001-0782/06/0300 $5.00

c

30 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

President’s Letter

A group of us at a half-dozen universities [have joined] forces around
a common hardware design that connects 40 FPGAs together. We

plan to develop a 1,000-way multiprocessor based on standard
instruction sets that can run standard software stacks. We would then

share that “gateware” and software with the research community.

